organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Hydroxypyridinium hydrogen chloranilate monohydrate

Kazuma Gotoh and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Received 3 November 2009; accepted 6 November 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.088; data-to-parameter ratio = 17.8.

In the title salt hydrate, $C_5H_6NO^+ \cdot C_6HCl_2O_4^- \cdot H_2O$, the three components are held together by $O-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot O$ hydrogen bonds, as well as by $C-H \cdot \cdot \cdot O$ contacts, forming a double-tape structure along the *c* axis. Within each tape, the pyridinium ring and the chloranilate ring are almost coplanar, forming a dihedral angle of 2.35 (7)°.

Related literature

For related structures, see, for example: Gotoh *et al.* (2009*a*,*b*); Gotoh & Ishida (2009).

Experimental

Crystal data

 $\begin{array}{l} C_{5}H_{6}\text{NO}^{+}\cdot C_{6}\text{HCl}_{2}\text{O}_{4}^{-}\cdot \text{H}_{2}\text{O}\\ M_{r} = 322.10\\ \text{Triclinic, } P\overline{1}\\ a = 7.4893 \ (13) \ \text{\AA}\\ b = 9.6650 \ (17) \ \text{\AA}\\ c = 9.9305 \ (17) \ \text{\AA}\\ \alpha = 88.129 \ (5)^{\circ}\\ \beta = 68.404 \ (6)^{\circ} \end{array}$

 $\gamma = 67.980 (4)^{\circ}$ $V = 614.95 (18) \text{ Å}^3$ Z = 2Mo K α radiation $\mu = 0.55 \text{ mm}^{-1}$ T = 180 K $0.20 \times 0.15 \times 0.05 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID-II

diffractometer Absorption correction: numerical (*ABSCOR*; Higashi, 1999) $T_{\min} = 0.907, T_{\max} = 0.973$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.030 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.088 & \text{independent and constrained} \\ S &= 1.07 & \text{refinement} \\ 3572 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.60 \text{ e } \text{\AA}^{-3} \\ 201 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.29 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdots O2^{i}$	0.911 (18)	1.867 (18)	2.7461 (17)	161.4 (18)
$O4-H4\cdots O1$	0.77 (3)	2.21 (3)	2.6348 (16)	115 (2)
$O4-H4\cdots O6$	0.77 (3)	2.04 (3)	2.7187 (17)	147 (3)
O5−H5···O1	0.85 (3)	1.80 (3)	2.6474 (17)	172 (3)
$O6-H6A\cdots O2^{i}$	0.80 (3)	2.21 (3)	2.8959 (18)	144 (3)
$O6-H6A\cdots O3^{i}$	0.80 (3)	2.50 (3)	3.1220 (17)	136 (3)
$O6-H6B\cdotsO1^{ii}$	0.84(4)	2.11(3)	2.9281 (18)	164 (3)
C7−H7···O6	0.95	2.59	3.484 (2)	157
C9−H9···O4 ⁱⁱⁱ	0.95	2.40	3.3084 (18)	160
$C10-H10\cdots O3^{iv}$	0.95	2.38	3.163 (2)	140

12237 measured reflections

 $R_{\rm int} = 0.025$

3572 independent reflections

2952 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x, y, z - 1; (ii) -x + 2, -y + 1, -z; (iii) x, y - 1, z; (iv) x, y - 1, z - 1.

Data collection: *PROCESS-AUTO* (Rigaku/MSC, 2004); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure* and *PLATON* (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2567).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467.
- Gotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273-o277.
- Gotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, 0614.
- Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o3060 [doi:10.1107/S1600536809046844]

3-Hydroxypyridinium hydrogen chloranilate monohydrate

K. Gotoh and H. Ishida

Comment

The title salt hydrate, $C_5H_6NO^+$. $C_6HCl_2O_4^-$. H_2O , (I), was prepared in order to extend our study on *D*—H···*A* hydrogen bonding (*D* = N, O, or C; *A* = N, O or Cl) in substituted-pyridine – chloranilic acid (systematic name: 2,5-dichloro-3,6-di-hydroxy-1,4-benzoquinone) systems (Gotoh & Ishida, 2009; Gotoh *et al.*, 2009*a,b*).

In (I), the three components are held together by O—H···O and N—H···O hydrogen bonds, as well as C—H···O contacts (Fig. 1 and Table 1) forming a double-tape structure along the *c* direction. The connections between individual tapes, Fig. 2, are accomplished via O_{water}–H···O hydrogen bonds, Fig. 3. Within each tape, the pyridinium N1/C7–C11 and the anion C1–C6 rings are almost coplanar, with a dihedral angle of 2.35 (7)° between them. A π - π interaction between the anion rings is also present within the double-tape structure; the centroid-centroid distance [Cg1···Cg1ⁱⁱⁱ; symmetry code: (iii) -x + 2, -y + 1, -z + 1] is 3.6729 (11) Å and the inter-planar separation is 3.2656 (6) Å. The double-tapes are connected by C—H···O contacts, resulting in a layer parallel to the (100) plane, Table 1.

Experimental

Single crystals were obtained by slow evaporation from a methanol solution (150 ml) of chloranilic acid (350 mg) and 3-hydroxypyridine (160 mg) at room temperature.

Refinement

All H atoms were found in a difference Fourier map and O- and N-bound H atoms were refined isotropically. The refined O—H and N—H bond lengths are given in Table 1. C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structures of the constituents in (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate O—H…O hydrogen bonds and C—H…O contacts.

Fig. 2. A partial packing diagram for (I), showing a molecular tape running along the c axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O contacts.

Fig. 3. A partial packing diagram for (I), showing a double-tape structure running along the *c* axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O contacts. H atoms not involved in the hydrogen bonds have been omitted.

3-Hydroxypyridinium hydrogen chloranilate monohydrate

Crystal data

$C_5H_6NO^+ \cdot C_6HCl_2O_4^- \cdot H_2O$	Z = 2
$M_r = 322.10$	$F_{000} = 328.00$
Triclinic, PT	$D_{\rm x} = 1.739 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
a = 7.4893 (13) Å	Cell parameters from 10001 reflections
b = 9.6650 (17) Å	$\theta = 3.0 - 30.1^{\circ}$
c = 9.9305 (17) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\alpha = 88.129 (5)^{\circ}$	T = 180 K
$\beta = 68.404 \ (6)^{\circ}$	Block, brown
$\gamma = 67.980 \ (4)^{\circ}$	$0.20\times0.15\times0.05~mm$
$V = 614.95 (18) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID-II diffractometer	3572 independent reflections
Detector resolution: 10.00 pixels mm ⁻¹	2952 reflections with $I > 2\sigma(I)$
T = 180 K	$R_{\rm int} = 0.025$
ω scans	$\theta_{\text{max}} = 30.0^{\circ}$
Absorption correction: numerical (ABSCOR; Higashi, 1999)	$h = -10 \rightarrow 10$
$T_{\min} = 0.907, \ T_{\max} = 0.973$	$k = -13 \rightarrow 13$
12237 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 0.2238P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3572 reflections	$\Delta \rho_{max} = 0.60 \text{ e } \text{\AA}^{-3}$
201 parameters	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

201 parameters Primary atom site locati methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.74975 (5)	0.30013 (3)	0.52240 (3)	0.01897 (9)
Cl2	0.76493 (5)	0.94942 (3)	0.44706 (4)	0.02295 (10)
01	0.77201 (16)	0.47186 (11)	0.26178 (10)	0.0198 (2)
O2	0.72724 (17)	0.51208 (11)	0.74674 (10)	0.0226 (2)
03	0.73261 (17)	0.78687 (12)	0.71214 (11)	0.0244 (2)
O4	0.76878 (18)	0.74463 (12)	0.23264 (11)	0.0238 (2)
O5	0.7211 (2)	0.21895 (12)	0.23481 (11)	0.0277 (2)
O6	0.8140 (2)	0.62351 (14)	-0.02703 (12)	0.0284 (2)
N1	0.7338 (2)	0.25226 (14)	-0.13073 (13)	0.0229 (2)
C1	0.76153 (19)	0.53710 (14)	0.37347 (13)	0.0153 (2)
C2	0.7509 (2)	0.47845 (13)	0.50577 (13)	0.0152 (2)
C3	0.7388 (2)	0.55870 (14)	0.62593 (13)	0.0162 (2)
C4	0.7419 (2)	0.71690 (14)	0.60863 (14)	0.0173 (2)
C5	0.7570 (2)	0.77458 (14)	0.46900 (14)	0.0168 (2)
C6	0.7618 (2)	0.69224 (14)	0.35935 (14)	0.0165 (2)
C7	0.7293 (2)	0.29123 (15)	-0.00035 (15)	0.0199 (3)
H7	0.7272	0.3870	0.0215	0.024*
C8	0.7279 (2)	0.18979 (15)	0.10182 (14)	0.0190 (3)
С9	0.7317 (2)	0.05028 (15)	0.06603 (15)	0.0222 (3)
Н9	0.7297	-0.0203	0.1348	0.027*
C10	0.7383 (2)	0.01496 (16)	-0.06979 (16)	0.0239 (3)
H10	0.7428	-0.0805	-0.0954	0.029*
C11	0.7382 (2)	0.11952 (17)	-0.16830 (15)	0.0252 (3)
H11	0.7413	0.0970	-0.2617	0.030*
H1	0.731 (3)	0.328 (2)	-0.188 (2)	0.041 (6)*
H6A	0.759 (4)	0.633 (3)	-0.084 (3)	0.067 (8)*
H6B	0.941 (5)	0.594 (3)	-0.081 (3)	0.061 (8)*
H4	0.762 (4)	0.690 (3)	0.182 (3)	0.063 (8)*
Н5	0.739 (4)	0.301 (3)	0.235 (3)	0.060 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02939 (17)	0.01539 (14)	0.01838 (15)	-0.01195 (12)	-0.01284 (12)	0.00521 (11)
Cl2	0.03172 (18)	0.01444 (15)	0.02679 (18)	-0.01173 (13)	-0.01295 (14)	0.00362 (11)
01	0.0324 (5)	0.0193 (4)	0.0138 (4)	-0.0142 (4)	-0.0113 (4)	0.0028 (3)
02	0.0366 (6)	0.0214 (5)	0.0159 (4)	-0.0141 (4)	-0.0140 (4)	0.0051 (4)
03	0.0360 (6)	0.0239 (5)	0.0181 (5)	-0.0149 (4)	-0.0120 (4)	-0.0016 (4)
O4	0.0443 (6)	0.0186 (5)	0.0171 (5)	-0.0168 (4)	-0.0166 (4)	0.0069 (4)
05	0.0531 (7)	0.0237 (5)	0.0208 (5)	-0.0232 (5)	-0.0218 (5)	0.0071 (4)
06	0.0357 (6)	0.0369 (6)	0.0159 (5)	-0.0149 (5)	-0.0124 (5)	0.0023 (4)
N1	0.0314 (6)	0.0236 (6)	0.0174 (5)	-0.0136 (5)	-0.0106 (5)	0.0073 (4)
C1	0.0189 (6)	0.0146 (5)	0.0145 (5)	-0.0077 (4)	-0.0076 (4)	0.0027 (4)
C2	0.0212 (6)	0.0130 (5)	0.0145 (6)	-0.0081 (4)	-0.0088 (5)	0.0029 (4)
C3	0.0192 (6)	0.0162 (5)	0.0152 (6)	-0.0077 (5)	-0.0079 (5)	0.0023 (4)
C4	0.0204 (6)	0.0180 (6)	0.0157 (6)	-0.0086 (5)	-0.0080 (5)	0.0011 (4)
C5	0.0218 (6)	0.0128 (5)	0.0185 (6)	-0.0086 (5)	-0.0088 (5)	0.0030 (4)
C6	0.0221 (6)	0.0152 (5)	0.0150 (6)	-0.0091 (5)	-0.0086 (5)	0.0043 (4)
C7	0.0272 (7)	0.0171 (6)	0.0191 (6)	-0.0114 (5)	-0.0101 (5)	0.0034 (5)
C8	0.0261 (7)	0.0181 (6)	0.0170 (6)	-0.0111 (5)	-0.0103 (5)	0.0026 (5)
C9	0.0340 (7)	0.0181 (6)	0.0202 (6)	-0.0134 (5)	-0.0134 (6)	0.0049 (5)
C10	0.0335 (7)	0.0206 (6)	0.0219 (7)	-0.0137 (6)	-0.0118 (6)	0.0002 (5)
C11	0.0344 (8)	0.0295 (7)	0.0162 (6)	-0.0157 (6)	-0.0113 (5)	0.0023 (5)

Geometric parameters (Å, °)

Cl1—C2	1.7289 (13)	C1—C2	1.4007 (17)
Cl2—C5	1.7172 (13)	C1—C6	1.5020 (17)
O1—C1	1.2564 (15)	C2—C3	1.4006 (17)
O2—C3	1.2519 (15)	C3—C4	1.5412 (18)
O3—C4	1.2149 (16)	C4—C5	1.4587 (18)
O4—C6	1.3313 (15)	C5—C6	1.3514 (18)
O4—H4	0.76 (3)	C7—C8	1.3877 (18)
O5—C8	1.3381 (16)	С7—Н7	0.9500
O5—H5	0.85 (3)	C8—C9	1.3930 (18)
O6—H6A	0.80 (3)	C9—C10	1.3808 (19)
O6—H6B	0.84 (3)	С9—Н9	0.9500
N1—C11	1.3330 (19)	C10-C11	1.383 (2)
N1—C7	1.3452 (18)	С10—Н10	0.9500
N1—H1	0.91 (2)	C11—H11	0.9500
С6—О4—Н4	111 (2)	C4—C5—Cl2	119.01 (9)
C8—O5—H5	106.0 (18)	O4—C6—C5	121.39 (11)
H6A—O6—H6B	103 (3)	O4—C6—C1	116.69 (11)
C11—N1—C7	123.32 (12)	C5—C6—C1	121.91 (11)
C11—N1—H1	125.1 (14)	N1—C7—C8	119.14 (12)
C7—N1—H1	111.6 (14)	N1—C7—H7	120.4
O1—C1—C2	126.22 (11)	С8—С7—Н7	120.4

O1—C1—C6	115.16 (11)	O5—C8—C7	123.49 (12)
C2—C1—C6	118.62 (11)	O5—C8—C9	117.59 (12)
C3—C2—C1	122.83 (11)	C7—C8—C9	118.92 (12)
C3—C2—C11	118.48 (9)	C10—C9—C8	119.78 (13)
C1—C2—Cl1	118.68 (9)	С10—С9—Н9	120.1
O2—C3—C2	125.37 (12)	С8—С9—Н9	120.1
O2—C3—C4	116.88 (11)	C9—C10—C11	119.55 (13)
C2—C3—C4	117.75 (11)	C9—C10—H10	120.2
O3—C4—C5	123.42 (12)	C11—C10—H10	120.2
O3—C4—C3	118.12 (11)	N1-C11-C10	119.29 (13)
C5—C4—C3	118.46 (10)	N1—C11—H11	120.4
C6—C5—C4	120.38 (11)	C10—C11—H11	120.4
C6—C5—Cl2	120.61 (10)		
O1—C1—C2—C3	-179.78 (13)	C4—C5—C6—O4	177.85 (12)
C6—C1—C2—C3	0.53 (19)	Cl2—C5—C6—O4	-1.29 (19)
O1—C1—C2—Cl1	-0.50 (19)	C4—C5—C6—C1	-2.7 (2)
C6—C1—C2—Cl1	179.80 (9)	Cl2—C5—C6—C1	178.13 (10)
C1—C2—C3—O2	179.38 (13)	O1—C1—C6—O4	1.29 (17)
Cl1—C2—C3—O2	0.10 (19)	C2—C1—C6—O4	-178.98 (12)
C1—C2—C3—C4	-1.25 (19)	O1—C1—C6—C5	-178.16 (12)
Cl1—C2—C3—C4	179.47 (9)	C2—C1—C6—C5	1.57 (19)
O2—C3—C4—O3	-0.19 (19)	C11—N1—C7—C8	-0.4 (2)
C2—C3—C4—O3	-179.62 (12)	N1—C7—C8—O5	-179.23 (13)
O2—C3—C4—C5	179.52 (12)	N1—C7—C8—C9	0.2 (2)
C2—C3—C4—C5	0.09 (18)	O5—C8—C9—C10	179.88 (14)
O3—C4—C5—C6	-178.41 (13)	C7—C8—C9—C10	0.5 (2)
C3—C4—C5—C6	1.89 (19)	C8—C9—C10—C11	-0.9 (2)
O3—C4—C5—Cl2	0.74 (19)	C7—N1—C11—C10	0.0 (2)
C3—C4—C5—Cl2	-178.96 (9)	C9—C10—C11—N1	0.6 (2)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1···O2 ⁱ	0.911 (18)	1.867 (18)	2.7461 (17)	161.4 (18)
O4—H4…O1	0.77 (3)	2.21 (3)	2.6348 (16)	115 (2)
O4—H4…O6	0.77 (3)	2.04 (3)	2.7187 (17)	147 (3)
O5—H5…O1	0.85 (3)	1.80 (3)	2.6474 (17)	172 (3)
O6—H6A···O2 ⁱ	0.80 (3)	2.21 (3)	2.8959 (18)	144 (3)
O6—H6A···O3 ⁱ	0.80 (3)	2.50 (3)	3.1220 (17)	136 (3)
O6—H6B···O1 ⁱⁱ	0.84 (4)	2.11 (3)	2.9281 (18)	164 (3)
С7—Н7…О6	0.95	2.59	3.484 (2)	157
С9—Н9…О4 ^{ііі}	0.95	2.40	3.3084 (18)	160
C10—H10····O3 ^{iv}	0.95	2.38	3.163 (2)	140
Summatry addas: (i) $x = 1$: (ii) $-x^{-1}$	2 + 1 + 1 + (iii) + 1 + (iv)	w v 1 = 1		

Symmetry codes: (i) x, y, z-1; (ii) -x+2, -y+1, -z; (iii) x, y-1, z; (iv) x, y-1, z-1.

Fig. 2

Fig. 3

